

SOUTH AFRICA'S LEAST-COST PLANNING OPTIONS AS A CASE STUDY FOR AFRICAN COUNTRIES

Dr Grové Steyn

Managing Director, Meridian Economics,
grove.steyn@meridianeconomics.co.za

15 - 17 May 2018 CTICC, Cape Town, South Africa

www.african-utility-week.com

Introduction

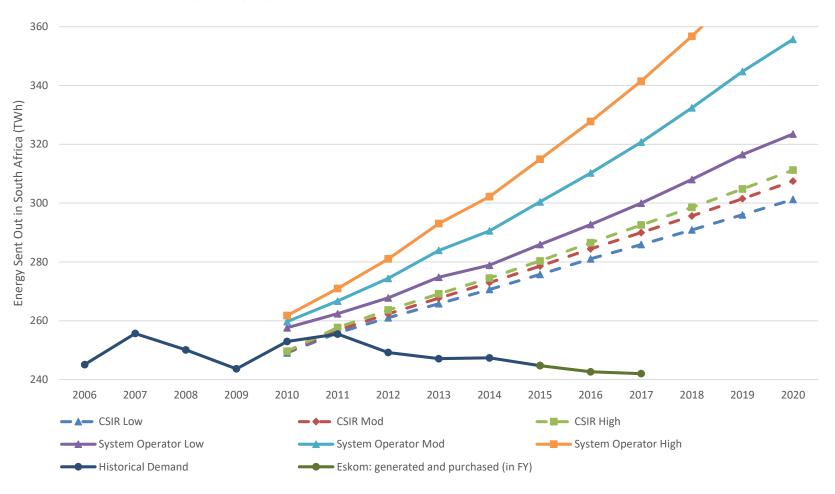
- This is a time when the power sector planning challenge is even greater than before
 - Disruptive technological change
 - Climate change and other environmental imperatives
 - The problem of uncertainty
 - Conflicting policy objectives?
 - System resilience
 - Socio economic development
 - Jobs, etc.
 - Environmental
 - Vested interests politics.
- What are the implications of these challenges for planning?
- The nature and scope of planning will partly depend on the characteristics of the power sector in each country.
 - But, the principles remain applicable
- Examples from the South African case will be used to illustrate the points.

A power sector plan amounts to a set of investment decisions

- A power plan is a set of high level investment decisions with
 - expected costs; and
 - expected benefits
- But neither of these are certain
 - The future is unknowable
 - Humans suffer from "Bounded rationality"
 - The challenge therefore is one of:
 - decision making under uncertainty

Uncertainty

- Risk: contingencies (states of nature) known and probabilities objectively assigned
- (Technical) Uncertainty: either future contingencies can not all be known, or probabilities can not be objectively assigned.
- Ignorance: neither all contingencies nor probabilities are known
 Stirling (1998)
- We don't know what it is that we don't know
 - The problem is bigger than what we think it is and is therefore generally underestimated
 - Bounded rationality in the context of uncertainty:
 - Research in behavioural economics: humans are not particularly well adjusted to dealing with uncertainty and probabilistic processes.


SA's Power Generation Planning Process

- The DOE remains responsible for the development of The Integrated Resource Plan (IRP)
- Based on a least cost optimisation model
- Process
 - 1. Adoption of planning assumptions (incl. demand forecasts)
 - 2. Modelling and scenario planning
 - 3. Risk adjustments
 - 4. Public consultation
 - 5. Cabinet approval and publication
- NERSA generation licence applications must show compliance with the IRP.

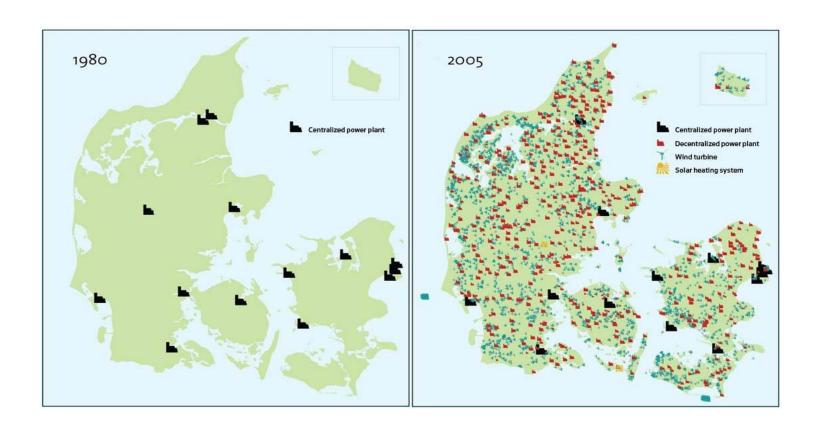
SA 2010 IRP Results

	New build options								
	Coal (PF, FBC, imports, own build)	Nuclear	Import hydro		Peak – OCGT	Wind	CSP	Solar PV	
	MW	MW	MW	MW	MW	MW	MW	MW	
2010	0	0	0	0	0	0	0	0	
2011	0	0	0	0	0	0	0	0	
2012	0	0	0	0	0	0	0	300	
2013	0	0	0	0	0	0	0	300	
2014	500 ¹	0	0	0	0	400	0	300	
2015	500 ¹	0	0	0	0	400	0	300	
2016	0	0	0	0	0	400	100	300	
2017	0	0	0	0	0	400	100	300	
2018	0	0	0	0	0	400 ⁴	100⁴	3004	
2019	250	0	0		0	400 ⁴	100 ⁴	300 ⁴	
2020	250	0	0	237 ³	0	400	100	300	
2021	250	0	0	237 ³	0	400	100	300	
2022	250	0		0	805	400	100	300	
2023	250	1 600		0	805	400	100	300	
2024	250	1 600	283 ²	0	0	800	100	300	
2025	250	1 600	0	0	805	1 600	100	1 000	
2026	1 000	1 600	0	0	0	400	0	500	
2027	250	0	0	0	0	1 600	0	500	
2028	1 000	1 600	0	474	690	0	0	500	
2029	250	1 600	0	237	805	0	0	1 000	
2030	1 000	0	0	948	0	0	0	1 000	
Total	6 250	9 600	2 609	2 370	3 910	8 400	1 000	8 400	

UNCERTAINTY: IRP 2010 demand forecasts and outcomes

UNCERTAINTY: Medupi power station cost overruns

Date	Capacity	Cost	Basis	Source
Jan-07	4500MW	R52bn	Incl. IDC, Excl. FGD	Eskom
Oct-07	4800MW	R78.6bn	Incl. IDC, Excl. FGD	Eskom
Nov-09	4764MW	R124.4bn	Incl. IDC, Excl. FGD	Eskom
Apr-11	4764MW	R98.9bn	Excl. IDC, Excl. FGD	Eskom
Jul-12	4764MW	R91.2bn	Excl. Transmission, FGD, other and IDC	Eskom
Jul-13	4764MW	R105bn	Excl. IDC	Eskom
Mar-16	4764MW	R145bn	Excl. IDC	Eskom
Final cost	4764MW	> R200bn	All inclusive	Own estimates


Disruptive technological changes provide new challenges and opportunities

- Clean and low cost renewables.
 - Countries such as Mexico, Saudi Arabia, etc. are already realising prices below 30 ZARc/kWh.
 - Embedded generation has become cost competitive against retail tariffs.
- Digitisation of the power system.
 - Smart meters.
 - Prosumers.
 - Community based peer-to-peer power trading block chain technology, etc.
 - e.g Bangladesh
- Energy storage.
 - Storage costs are rapidly declining.
 - Embedded and grid-scale levels.
 - Electric Vehicles.
 - SA: 2018 Nissan Leaf claims a range of 378 km!
 - At 10kWh/100km and falling prices EVs are rapidly becoming competitive against ICE vehicles.
- Etc

These changes result in a new power sector techno-economic paradigm

- Economies of scale have almost disappeared.
 - A large turbine is now 7.5MW (wind) not 800MW (steam); and
 - A large power project is now 140MW not 4800MW.
- The cheapest sources of generation (renewables) will produce variable output.
 - Complementary dispatchable mid-merit resources will be valuable; and
 - Inflexible base load resources will lose value.
- Decentralisation.
 - Hundreds of utility scale projects will now be spread throughout the network; and
 - Embedded demand side resources (demand or generation based) will proliferate.
- System balancing.
 - Digitally based market and pricing based mechanisms will play a much bigger role in order to effectively coordinate a multitude of resources;
 - The role of centralised command-and-control will reduce (but not disappear).
- In general the action will move from the centre to the periphery.
 - Greater energy democracy and choice.

These changes result in a new power sector techno-economic paradigm

Key aspects uncertainty

Capital cost

- A project can lose value because an asset might cost more to create than the cost on which the decision was predicated.
- Construction delays add hugely to cost.

Operating

- Reliability
- Running costs (mostly operating, fuel and maintenance) could be higher than anticipated; or its
- Benefits (mostly revenue) could be less than anticipated.
 - E.g. New competing technologies could emmerge that offer cheaper power.
 - Demand could be far greater or far less than forecast (e.g. IEP 2010 forecasts)
 - Over a period of between 15 50 years or longer.

Planning strategies in the face of uncertainty

- Incrementalism: "The science of muddling through" Lindblom (1959 and 1979)
 - Eschews attempts at large-scale rational comprehensive planning;
 - In favour of modest approaches that recognise the realities of bounded rationality and uncertainty;
 - Poses a challenge to the mastery-viaunderstanding tradition of Western civilization;
 - Effective response to complexity and uncertainty in the context of bounded rationality

Planning strategies in the face of uncertainty (2)

- Flexibility (of an investment or technology)
 - Lower complexity
 - Shorter lead times (shorter technology cycles)
 - Smaller unit sizes
 - Lower capital intensity per unit of output
 - Less dependence on dedicated infrastructure
 - Higher substitutability of inputs
- Allows for trial and error learning (Collingridge, 1992)
- Enables adaptation to changing circumstances and therefore reduces the potential costs of errors (Collingridge and James, 1991).

With inflexible technologies "ordinary mistakes lead to extraordinary consequences".

Planning strategies in the face of uncertainty (3)

- Diversity (of a system)
 - promotes beneficial forms of innovation and growth
 - hedges against exposure to uncertainty and ignorance
 - mitigates the adverse effects of institutional 'momentum' and 'lock-in' in technological trajectories
 - accommodates disparate interests associated with social choice in modern pluralistic societies. Stirling (1998: 37)
- These strategies imply that: Options have value
 - Inflexible strategies destroy options

Lessons to learn from the SA planning case

- Plan for disruption.
 - We need to quantify and include the relative "option value" (hedge against uncertainty) embedded in different technology options.
- South Africa is a disproportionate contributor to climate change.
 - The IRP base case should now explicitly include its carbon costs (risk to SA economy).
- Need to make sure that IRP planning does not just become a cloak of legitimacy to hang over a process that is actually primarily about protecting vested interests.
- In the past the SA the government has simply "policy adjusted" the optimised least cost IRP plan to get the outcomes that they wanted.
 - This effectively discards the entire rational planning process
- All policy objectives (not outcomes) should be <u>finalised upfront</u> and specified in quantifiable terms as part of the objective function or constraints of the model.